Что нужно для солнечной электростанции для дома
Перейти к содержимому

Что нужно для солнечной электростанции для дома

  • автор:

Солнечная электростанция на дом 200 м2 своими руками

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.

Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер?

Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.

Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.

Как выбрать солнечные панели?

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции

Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей также продают всё сопутствующее оборудование, поэтому я начал поиск отталкиваясь от солнечных батарей. Один из солидных брендов – TopRay Solar. О них есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует и далеко не на последних местах, то есть можно брать. Кроме того, фирма-продавец солнечных панелей TopRay, также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство – вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
Не буду томить, остановился я на более дешевой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

    – 9 шт
  1. Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
  2. Аккумулятор AGM Парус HML-12-100 – 4 шт

Что даёт солнечная электростанция?

Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.

Начинаю собирать

Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыкание\размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции

После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.

Но есть в наличии дома солнечной электростанции и нюансы:

  1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
  2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
  3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.

Заключение

Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.

Что нужно для солнечной электростанции для дома

Солнечная панель состоит из нескольких десятков ячеек с фотоэлементами и имеет площадь около двух квадратных метров. Главной потребительской характеристикой панели, влияющей на ее цену, является мощность электроэнергии, способная вырабатываться ее элементами, измеряемая в ваттах (речь об идеальных условиях в летний солнечный день). Современные панели имеют мощность от 300 до 500 ватт и стоят от нескольких тысяч гривен за штуку. На украинском рынке сейчас представлены сотни моделей солнечных панелей и несколько десятков производителей.

При выборе панели стоит также обратить внимание на такие характеристики как КПД (колеблется от 15 до 20 процентов), температурный режим (в принципе, все без исключения они всепогодные), класс IP-защиты распределительной коробки (обычно IP68). Конечно же, самые эффективные панели стоят дороже, выгоднее всего сейчас покупать панели мощностью 350-400 ватт, но ситуация с каждым годом изменяется в лучшую сторону.

Услышав фразу «домашняя солнечная электростанция» мы обычно представляем себе солнечные панели, установленные на крыше дома. Но такой вид установки имеет и свои недостатки. Во-первых, на генерацию энергии сильно влияет азимут (в идеале панели должны смотреть на юг), а на ориентацию уже построенного дома повлиять вы не сможете, что приведет к снижению эффективности работы панелей даже если разместить их на скате солнечной стороны. Во-вторых, нельзя будет изменить угол наклона панелей (он будет соответствовать углу наклона ската), что тоже влияет на генерацию энергии. В-третьих, зимой панели придется регулярно чистить от снега, иначе они просто не будут выполнять свои функции. Не каждый захочет зимой лезть на крышу дома с риском упасть. Каждый раз после снегопада.

Установка солнечных панелей на земле, на специальной поддерживающей конструкции, лишена этих недостатков — можно расположить их так, чтобы панели смотрели строго на юг (помним, что магнитный полюс Земли дает небольшую погрешность, для Украины это 7-8 градусов). Но такой вариант размещения, конечно же, займет немало места на участке рядом с домом. Хотя один из владельцев СЭС, с которым мы общались, сказал, что место под панелями отдал под грядки с помидорами.

Я поставил солнечные батареи в частном доме и продаю электричество

В 2002 году я купил участок в чистом поле и построил полностью автономный дом.

Нам с супругой достались 23 сотки в пригороде Краснодара. Отличное место, но без коммуникаций: свет, газ и воду было либо не подключить, либо это стоило астрономических денег. Тогда я собрал систему, которая позволила семь лет жить с автономным электроснабжением, — за счет солнечных батарей и ветряков.

Расскажу, сколько это стоило и как я стал продавать излишки энергии, когда до дома дотянули ЛЭП.

Вот о чем пойдет речь

Как мы пришли к энергии солнца и ветра

До 2002 года мы жили в квартире и мечтали о собственном доме. Искали просторный участок, потому что не хотели ютиться на шести сотках. В 2002 году нам повезло: под Краснодаром продавали бывшие колхозные паи под ИЖС — постройку индивидуального дома.

Я купил два участка 11,5 сотки за 50 000 Р — почти даром. Владелец земли торопился с продажей и думал, что других покупателей не найдет, так как участки в чистом поле. Паи уже были переведены в собственность, и сложностей с их покупкой и оформлением не возникло. Спустя три года земля такой площади в нашем районе стоила уже 1,2 млн рублей, а в 2023 году — 4 млн рублей.

После покупки я стал проектировать дом. Встал вопрос, где брать электричество, воду и чем отапливать жилье. В коммунальные организации я не стал обращаться, потому что нас никто не подключил бы. До ближайшей деревни было полкилометра — тянуть ЛЭП, водопровод и газовые трубы слишком накладно.

Уже когда в 2015 году появились соседи, а наши земли включили в состав деревни, я убедился, что был прав. Соседу насчитали за электрификацию участка 1,5 млн рублей.

Пришлось проектировать полностью автономный дом. Мне пригодился опыт брата, который во времена СССР работал на заводе «Сатурн». Там производили солнечные батареи для космических аппаратов. В родительской квартире у нас были игрушки, работающие на солнечной энергии, брат делал их из отходов производства. Я всегда относился к этому как к баловству, а тут вдруг понял: «Это можно использовать!»

В том же 2002 году я нашел в интернете человека, который переехал из Москвы в окрестности города Горячий Ключ и жил в лесу в полной автономии. Мы договорились о встрече и съездили к нему. На его участке были три небольших ветрогенератора китайского производства, солнечная батарея и аккумуляторы. Но мощности не хватало, поэтому приходилось регулярно запускать бензиновый генератор. Система была далека от идеала, и я подумал, что могу сделать лучше.

Что учитывал при постройке автономного дома

У меня военное образование, но есть опыт строительства: я раньше руководил фирмой, которая возводила частные дома. Поэтому знаю нормы и погружен в эту тематику. Вот что я учел еще до стройки.

Система отопления. На газ мы не надеялись, а подключать электрокотел от солнечных батарей и ветряков — заведомое фиаско. На отопление нужна такая мощность, что потребуется целая куча оборудования, а затраты будут огромными.

Поэтому решили отапливать дом дровяным котлом. Электричества для него требуется минимум: только для розжига и на работу циркуляционного насоса, который гоняет подогретую воду по радиаторам или теплым полам. Энергии нужно примерно как для одной лампы накаливания. Все остальное, кроме отопления, уже проектировали с учетом электричества, которое будет вырабатывать автономная станция.

Исходя из своего расчета я подобрал котел и решил, что у нас дома не будет радиаторов — только теплые полы. Это комфортнее и эффективнее с точки зрения распределения тепла: полы прогреваются равномерно, в доме нет холодных углов.

В качестве топлива для котла сначала использовал обычные дрова. Потом экспериментировал с брикетами из бука и даже топил рисовой шелухой, но это не оправдало себя, поскольку забирало много времени: нужно колоть дрова, растапливать вручную котел один-два раза в сутки и каждые полчаса-час подбрасывать новую порцию топлива.

Зато хорошо зарекомендовала пеллетная горелка отечественного производства, которую я добавил к котлу. С ней я мог загрузить пеллет на несколько дней и ничего не трогать — система сама подбрасывала топливо в топку.

Пеллетный котел тоже требует внимания. Раз в несколько дней надо засыпать пеллеты в бункер — хранилище, откуда они подаются в топку. Также нужно выгребать золу, заготавливать каждый год на зиму пять-шесть тонн топлива и складировать в сухом месте.

Утепление. Чем лучше дом утеплен, тем реже приходится включать отопление. Поэтому я основательно подошел к вопросу, из чего строить стены и как утеплить дом.

В качестве материала для стен я выбрал пустотные блоки из бетонной смеси. Эта технология называется ТИСЭ: я купил на заводе несколько форм для заливки раствора и делал блоки прямо на месте. Несущие стены вышли толщиной 250 мм с пустотами внутри, что уже неплохо с точки зрения сохранения тепла. Дополнительно я утеплил стены снаружи слоем базальтовой ваты 100 мм. Затем в качестве финишного покрытия обшил сайдингом.

Такое хорошее утепление на Кубани делают редко — обычно утепляют стены слоем 50 мм. Многие ошибочно считают, что для наших широт этого достаточно.

Теплопотери. Важно понять, сколько тепла теряет дом, чтобы правильно выбрать отопительное оборудование.

Формулы теплопотерь из сводов правил такие, что голову сломаешь. Даже профессиональные проектировщики не всегда правильно рассчитывают. Обычные люди часто используют теплотехнический калькулятор или берут упрощенную цифру: закладывают 1 кВт тепловой энергии на 10 м² площади дома. Это потери за час.

По опыту знаю, что такой расчет дает завышенную цифру, которая соответствует плохо утепленному дому. Кроме того, теплопотери дома зависят от температуры снаружи, поэтому расчет делают для экстремальных условий, точнее — для самой холодной пятидневки в году. Для Кубани это около −21 °С. Все остальное время погодные условия мягче, так что дом теряет меньше тепла.

Я сделал расчет, и для моего хорошо утепленного дома теплопотери вышли 0,5 кВт на 10 м². А на весь дом с примыкающим хозблоком общей площадью около 200 м² — около 10 кВт. Еще 5 кВт я заложил на горячее водоснабжение и в качестве запаса мощности.

Как рассчитал мощность автономной электростанции

Когда я определился с отоплением, приступил к расчету электрификации дома — сколько электричества должна вырабатывать автономная станция. Тут самое важное — составить список электроприборов в доме. Учитывают все — от бойлера для подогрева воды до фена. Также нужно расписать режимы работы, чтобы понимать, в какие часы обычно мощные приборы работают параллельно и когда происходят пиковые нагрузки. Электростанция должна с ними справляться.

Вот что получилось у меня.

Потребители первой очереди, то есть жизненно необходимые:

  1. Погружной насос для скважины и автоматика водоснабжения.
  2. Освещение.
  3. Автоматика отопительного котла.
  4. Холодильник.
  5. Электрический бойлер.
  6. Телевизор.
  7. Компьютер.

Потребители второй очереди — без них жить можно, но не хочется:

  1. Мелкие кухонные электроприборы.
  2. Утюг.
  3. Фен супруги.
  4. Пылесос, бытовой электроинструмент.
  5. Принтер и сканер для компьютера.
  6. Стиральная машина.

Потребители третьей очереди, без которых легко обойтись:

  1. Посудомоечная машина.
  2. Кондиционер.
  3. Музыкальный центр.
  4. Сварочный аппарат и другие электроинструменты.
  5. Гидромассаж ванны.

В документах к приборам указана их мощность, этот параметр и нужен для расчета. Например, мой холодильник с маркировкой А+ потребляет в среднем 40 Вт в час, а современный телевизор — около 50 Вт. Самые мощные приборы — нагревательные. Так, электрический бойлер требует обычно 1,5—2 кВт , а утюг — до 1,5 кВт.

Если дом питают возобновляемые источники, важно минимизировать энергопотребление — не выбирать устаревшую бытовую технику и лампы накаливания. Нужны приборы с маркировкой А+ или А++ и светодиодные лампы.

Если суммировать все мощности, общее потребление на мой дом вышло около 6 кВт. Это пиковая мощность, когда одновременно включены все приборы из списка. На деле такое невозможно. Поэтому еще считается среднее часовое потребление, для обычного дома это от 200 до 500 Вт в час. Точнее можно посчитать в уме, прикинув, что именно работает в каждый час.

Таким образом, минимальная суточная потребность в энергии у меня получилась не менее 6 кВт·ч для самых сложных погодных условий декабря и 10—12 кВт·ч для повышенного комфорта в солнечную или ветреную погоду. Для первой зимовки жизненно важный минимум обеспечивали солнечные панели на 900 Вт и два ветрогенератора по 1,5 кВт номинальной мощности. При этом на средней скорости ветра — около 4 м/с — каждый ветряк выдает только около 200 Вт.

Варианты работы солнечных батарей

Я понимал, что придется экономить электричество, даже если заложить резерв мощности солнечных батарей и ветряков выше пиковой нагрузки на дом. Потому что если нет солнца и ветра, то нет и энергии, и неважно, насколько мощная система.

В то же время не обязательно, чтобы панели и ветряки выдавали на мой дом 6 кВт или больше — систему можно дополнить аккумуляторами. Они будут заряжаться по мере производства энергии и отдавать в розетки и на освещение столько электричества, сколько нужно сейчас, а остатки хранить на случай, когда выработка упадет.

Без аккумулятора солнечные батареи тоже будут работать, если есть питание от ЛЭП. Такая система называется сетевой, ее ставят, чтобы снизить платежи за электричество. Получать энергию солнца и ветра напрямую, без накопления в аккумуляторах, не получится: в моменте ее слишком мало, вдобавок она слишком нестабильна.

Мне вариант сетевой станции не подходил в любом случае, так как центрального электричества не было. Но даже если бы оно было, у сетевой системы много минусов. А лучше всего — гибридная система, когда есть и аккумуляторы, и сеть.

Чем различаются солнечные электростанции

Сетевая Аккумуляторная и гибридная
Работает от ЛЭП, солнечные батареи и ветряки только помогают снизить платеж за свет Работает от солнечных батарей или ветряков, ЛЭП не требуется. Но может работать и совместно с центральной сетью — такую систему называют гибридной
Не работает, если отключат свет, даже когда солнце в зените Работает круглосуточно без посторонней подпитки
Чувствительна к качеству электричества, и если напряжение скачет, будет отключаться Не предъявляет особых требований к качеству электричества
Систему не подключить к бензогенератору при аварии: сетевой инвертор, который преобразует постоянный ток в переменный, не работает с генераторами Можно подключить бензогенератор. Система даже может работать совместно с ним: часть электричества дает генератор, а часть — солнечная система

Все системы точно жизнеспособны с апреля по сентябрь, когда солнечно, но я беру условия Краснодара. В других городах солнечных дней может быть меньше. Когда солнечная станция будет не справляться, а центрального электричества нет — вообще или из-за аварии, — придется заводить бензогенератор.

Солнечные электростанции для дома условно разделяют еще на три группы — в зависимости от мощности и цены.

Малой мощности. Это гибридные системы, заменяющие центральную сеть в случае аварии. Энергия солнца и ветра копится в аккумуляторах, а когда свет отключили, аккумуляторы начинают ее отдавать. Поскольку предполагается, что электричество из сети рано или поздно вернут, не надо планировать питание всех без исключения приборов. Достаточно, чтобы электричества хватило на работу насоса системы отопления, освещения, роутера с ноутбуком и, возможно, холодильника.

Подойдут солнечные панели мощностью 1,62 кВт, а для преобразования тока из постоянного в переменный понадобится инвертор на 1,4 кВт номинальной мощности. Еще нужен контроллер, который будет всем управлять, и аккумуляторы с запасом энергии до 0,65 кВт·ч.

Когда свет выключили, аккумуляторы вступают в работу автоматически. Это удобно: не надо выходить на улицу, заводить бензогенератор и тянуть от него удлинители. А если все в порядке, излишки электричества можно продавать и экономить на платежах, об этом расскажу ниже.

В 2023 году такая система под ключ стоит около 250 000 Р .

Средней мощности. Все то же самое, но в солнечные дни такая система будет генерировать больше излишков энергии, которые можно продать: хорошо заработать вряд ли получится, а вот снизить платежи за электричество — наверняка.

В случае аварии такая система будет давать электричество дольше, а запитать можно больше приборов.

Нужны солнечные панели на 3,24 кВт, инвертор на 3 кВт номинальной мощности, контроллер и аккумуляторы с запасом до 1,4 кВт·ч.

В 2023 году такая система под ключ стоит 390 000 Р .

Повышенной мощности. Это электростанция, способная полностью покрыть потребление всего дома независимо от погоды. Разве что в самые пасмурные дни допускается снижение выработки. Мне требовалась как раз такая система.

Это панели мощностью 6,5 кВт, инвертор на 4 кВт номинальной мощности, контроллер и батареи с доступным запасом энергии до 4 кВт·ч.

В 2023 году такая система под ключ стоит 670 000 Р , но у меня ушло вдвое меньше денег, так как я покупал и собирал все сам.

Зачем добавлять к солнечным батареям ветряки

Я решил дополнить солнечные батареи ветряками, потому что это надежнее. Ночью солнца нет, а ветер дует. А если и ветер закончился ночью, тогда на аккумуляторах есть шанс дотянуть до утра.

Но если есть централизованная сеть, я не рекомендую связываться с ветрогенератором. Стоимость эксплуатации гораздо выше, чем у солнечных батарей, а срок службы меньше. Ветряки чаще ломаются. Поэтому их лучше использовать там, где дом полностью автономный, а для снижения платежей за ЖКУ лучше солнечные батареи.

У меня получилась такая система:

  1. Китайские солнечные панели — «Эксморк» и General Energo.
  2. Два ветряка Zonhan, тоже китайские.
  3. Контроллер «Микроарт».
  4. Инвертор «Микроарт».
  5. Американские аккумуляторы «Троян» и российские от тюменского завода.

Я опасался сразу вкладывать много денег, поэтому расширял систему постепенно. Первую зиму солнечные панели давали всего около киловатта, еще стояли два ветряка. Потом я стал добавлять солнечные панели, и через пару-тройку лет их было уже на 5 кВт.

Жить пришлось с оглядкой на погоду. Я смотрел каждый день прогноз, чтобы понять, что с солнцем и ветром.

В пасмурную и безветренную погоду мы не стирали и не включали электрочайник. Бойлер для приготовления горячей воды работал вручную: если по прогнозу был солнечный день, я включал бойлер перед отъездом на работу, а вечером можно было принять горячий душ. Если солнца не прогнозировалось, бойлер включали ненадолго вечером и обходились теплой водой.

Один раз я утром включил бойлер, но прогноз соврал, солнце не вышло. Бойлер нагрелся за счет аккумуляторов, но посадил их практически полностью. Заряжать было нечем: ветра и солнца не было. А это 30 декабря, канун Нового года. Я пошел к соседу, взял бензогенератор и подзарядил с помощью него аккумуляторы. Это был единственный раз, когда я заводил генератор.

В доме мы жили вдвоем с женой и собаками. Супруга относилась к моим экспериментам с большим пониманием, бытовые ограничения для нас оказались не критичны — просто небольшие неудобства.

Всего мы прожили в автономном доме семь лет. Потом вокруг нас появилось много соседей, и в 2018 году на нашу сторону деревни все же протянули ЛЭП. Я тоже к ней подключился, тогда это еще стоило всего 550 Р . На восьмой год жизни в своем доме я впервые получил платежку за свет, до этого мы не платили за электричество ни копейки.

С появлением центральной сети моя электростанция продолжила работать: разбирать ее было жалко, да и вряд ли удалось бы выгодно продать оборудование.

Как я стал продавать излишки электроэнергии

В 2019 году в России приняли поправки в закон об электроэнергетике, которые разрешили так называемую микрогенерацию. То есть человек или предприятие с собственной электростанцией любого типа могут продавать электричество мощностью до 15 кВт, а энергосбыт обязан его купить.

Энергосбытовые и сетевые компании воспринимают это в штыки. Для них это лишняя возня, к тому же они монополисты и часто наглеют: пользуются тем, что люди не знают законов.

Чем отличается сетевая компания от энергосбыта

Сетевая компания — это транспортировщик электричества, владеющий подстанциями и кабелями. Сетевая организация отвечает за подключение домов, а также за то, чтобы электричество было нужного качества, например не прыгало напряжение.

Энергосбыт — это сбытовая компания, которая занимается только продажей электричества. Квитанции приходят с реквизитами энергосбыта. Туда же жалуются, если есть ошибки в начислениях.

Теоретически процедура, чтобы начать продажу электричества, выглядит просто:

  1. Подать заявление на сайте сетевой компании, приложив правоустанавливающие документы на дом и землю.
  2. Получить одобрение и техусловия.
  3. Дождаться электриков, которые заменят счетчик на двунаправленный, он крутится в обе стороны.
  4. Заключить договор купли-продажи электричества.

На практике уже на первом этапе начинаются проблемы. Например, я столкнулся с некорректной работой личного кабинета на сайте сетевиков. Вместо ограничения по мощности 15 кВт он упорно формировал заявку на 30 кВт. Пришлось вести долгую переписку.

Потом сетевики требовали проект техприсоединения, хотя для частных домов никакие проекты не нужны. Когда я это доказал, стали просить документы на оборудование. Я еще в заявке указал данные инвертора, но у меня требовали чуть ли не накладные.

Есть еще хитрый способ тянуть время. В личном кабинете сетевой компании не было возможности дополнить заявку новыми документами. Нужно было каждый раз писать новое обращение и прикладывать документы. В таком случае срок рассмотрения обращения — до 30 дней. То есть любая проблема — это сразу дополнительное время.

Я быстро понял, как строить диалог с сетевой компанией: требовать исполнения всего, что положено, в минимальные сроки. В обращениях я стал ссылаться на законы и требовал рассматривать дополнительные документы в течение трех рабочих дней, а в противном случае обещал отправить жалобу в антимонопольную службу. Это сработало — отвечать стали строго за три дня.

В итоге я добился оформления технологического присоединения за три месяца: приехали электрики, поменяли счетчик, выдали мне акт ввода в эксплуатацию. Так как счетчик висит высоко на опоре, мне дали пульт, на котором я могу посмотреть движение энергии в обе стороны.

После этого сетевая компания автоматически передала мои данные в энергосбыт. С ним я заключил договор купли-продажи электрической энергии. Энергосбыт сам занимается расчетами и начислениями, мне никакие данные передавать не надо. Все сведения о потреблении из сети и генерации в сеть ежемесячно появляются в личном кабинете на сайте энергосбыта. Также я получаю на электронную почту акт с суммами и цифрами для оплаты избытка энергии.

Шаблон договора микрогенерацииDOCX, 50,3 КБ

У меня все прошло нормально, но сетевая компания и энергосбыт могут просто не передать документы друг другу. Тогда энергосбыт начнет требовать те же самые документы у потребителя, хотя они уже есть у сетевиков. Знаю людей, которые возились со всем этим больше года.

Цена выкупа электричества в договоре явно не прописана, потому что она есть в законодательстве. Там достаточно сложная формула. Цена определяется на оптовом рынке по соотношению заявок купли-продажи и с учетом надбавки за мощность. Оптовая цена меняется, можно сказать, онлайн. А доплата за мощность зависит от региона. Например, у нас на юге дефицит энергомощностей, соответственно, и надбавка больше.

Так, в сентябре 2022 года у меня выкупали электричество по 5,6 Р за кВт·ч, хотя сам я платил 4,32 Р днем и 2,32 Р ночью. У меня льготный сельский тариф, но факт остается фактом: в моем случае за избыток платят больше, чем ту цену, по которой я сам покупаю электричество.

Цена электричества от солнечных панелей известна заранее на 25 лет вперед

Экономическая выгодность собственной солнечной электростанции зависит от многих факторов. Это уровень инсоляции, тип, состав и стоимость солнечной электростанции, угол наклона и направление солнечных панелей, стоимость альтернативных вариантов электроснабжения, профиль потребления электроэнергии, есть ли поставка излишков электроэнергии в сеть. Однако некоторые общие выводы все же можно сделать.

Исследования показывают, что в 2023 году стоимость производства киловатт-часа электроэнергии на собственной солнечной электростанции для домохозяйств в России начинается от 4,09 Р . Эта стоимость включает в себя все расходы в течение всего жизненного цикла станции, учитывает деградацию солнечных панелей и разную инсоляцию в регионах.

Дешевле всего производить собственную солнечную электроэнергию на юге Дальнего Востока (Забайкальский край, Республика Бурятия, Амурская область), на Кавказе и во многих других южных регионах европейской части России. Например, в Краснодарском крае, Астраханской, Ростовской и Волгоградской областях солнечный киловатт-час может стоить около 5 Р .

Цены на сетевую электроэнергию быстро растут. В 2022 году тарифы для населения увеличились почти на 15%. Во многих регионах платят больше 5 Р , а иногда и больше 6 Р за киловатт-час. А стоимость электроэнергии от собственной солнечной электростанции известна заранее и неизменна для всего срока эксплуатации — около 25 лет. Оборудование дешевеет за счет внедрения инновационных решений. Это значит, что солнечные станции в будущем станут производить более дешевую электроэнергию.

В российском частном жилом фонде установлены тысячи небольших электростанций, которые не выдают мощность в сеть и никем не учитываются. По закону о микрогенерации, то есть с выдачей в сеть, осенью 2022 года было подключено всего несколько десятков домохозяйств.

Что касается многоквартирных домов, там установка панелей возможна в основном для компенсации затрат электроэнергии на общедомовые нужды: например, освещение в подъезде и работу лифтов. Если один из жильцов захочет установить на крыше многоквартирного дома солнечные панели только для себя, понадобится решение 2 /3 собственников. Его достаточно сложно получить на практике.

Сейчас идет работа по упрощению процесса подключения электростанций, которые могут выдавать мощность в сеть, — этот процесс переводят на госуслуги. Но для лучшего стимулирования развития собственной солнечной генерации следовало бы также временно ввести дополнительные меры поддержки. Например, субсидирование кредитов на приобретение солнечных электростанций, а также субсидирование непосредственно самой покупки таких станций у российских производителей с подтвержденной степенью локализации — при условии подключения этих электростанций к сети по закону о микрогенерации.

Помимо этого, следует вернуть льготное технологическое присоединение объектов микрогенерации на основе возобновляемых источников, которое раньше стоило 550 Р вне зависимости от присоединяемой мощности, а с 1 июля 2022 года возросло в цене в десятки раз и перестало быть льготным.

Что с платежами за ЖКУ в доме с солнечными батареями

Как минимум продажа избытков энергии позволяет существенно снизить платежи за электричество и сократить зависимость от роста тарифов. В некоторых случаях — заработать. По закону до конца 2029 года такая прибыль не облагается подоходным налогом. А расчет делают просто: берут разницу между объемом потребленной энергии из сети за месяц и объемом излишков, отправленных за этот же месяц в сеть.

В солнечную половину года я получаю нулевые квитанции к оплате, а еще по электронной почте приходит акт — там указано, сколько излишков я продал, и суммы. А потом на банковскую карту падают деньги.

Зимой, когда солнца меньше, я вытягиваю электричества из сети больше, чем туда закачиваю. Это связано с работой системы отопления: когда к нам провели центральное электричество, я заменил котел на тепловой насос. Это альтернатива газовому или электрическому котлу. Тепловой насос берет энергию из воздуха, воды или грунта и переносит в систему отопления дома. В моем случае тепло добываем из грунта — такой насос еще называют геотермальным.

Для работы теплового насоса нужно электричество: на условные 1 кВт из электросети насос выдает 3—4 кВт тепловой энергии. Это, конечно, не электрокотел, но все-таки он потребляет прилично, особенно зимой. Поэтому зимой мне ничего не платят, плачу я — но гораздо меньше, чем мог бы платить без солнечной электростанции.

До июля 2022 года мощность моей электростанции была 11 кВт, в июле я увеличил ее до 13,5 кВт. За все лето заработал около 15 000 Р , счета за электричество были нулевые.

В целом за год примерно 16 000 Р я заработал на продаже излишков, а 24 000 Р потратил на покупку электроэнергии. Разница 8000 Р , то есть в пересчете на 12 месяцев мой условный средний ежемесячный платеж за свет составляет всего 666 Р . Это баланс с учетом отопления тепловым насосом. Если бы у нас был газ, наверное, мы бы вообще не платили за электричество.

Солнечная электростанция на дом площадью 200 м² своими руками

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не два-три часа в сутки, пока работает генератор, а постоянно.

Но это всё как-то далеко от нашей жизни, поэтому я решил на своём примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома.

Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв, может посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я всё это сам собираю.

Исходные данные: частный дом площадью около 200 м² подключён к электросетям. Трёхфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее.

Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение шесть дней подряд на период от двух до восьми часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус — после принятия закона о продаже частными лицами электроэнергии в сеть начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку.

Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги.

Я решил совместить эти два способа. Отчасти потому, что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительстве солнечной электростанции. Обратите внимание, солнечные панели установлены за деревом — так свет на них не попадает, и они просто не работают.

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности.

То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моём доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счёту, их всего три, но бывают вариации. Расположу по росту стоимости каждой системы.

Сетевая солнечная электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220 В или 380 В в доме и потребляется домашними энергосистемами.

Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества.

Кроме того, со сложившейся инфраструктурой электросети работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счётчики считают энергию «по модулю», то есть отданную в сеть энергию счётчик посчитает как потреблённую, и за неё ещё придётся заплатить.

Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная солнечная электростанция — этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанций. Состоит из четырёх элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор.

Основа всего — гибридный инвертор, который способен в потребляемую от внешней сети энергию подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритизации потребляемой энергии.

В идеале дом должен потреблять сначала энергию от солнечных панелей и только при её недостатке — добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасённой в аккумуляторах.

Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная солнечная электростанция — этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше четырёх стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена гидроэлектростанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен — в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ.

Такая электростанция легко трансформируется в гибридную при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного — это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети.

При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту.

Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечных электростанциях, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут вопросы.

Солнечный контроллер — это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12 В. И АКБ изготавливаются кратно 12 В, так уж повелось.

Простые системы на 1–2 кВт мощности работают от 12 В. Производительные системы на 2–3 кВт уже функционируют от 24 В, а мощные системы на 4–5 кВт и более работают на 48 В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим, у нас есть система на 48 В и солнечные панели на 36 В (панель собрана кратно 3 х 12 В). Как получить искомые 48 В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48 В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой.

Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передаёт в АКБ. Это упрощённо.

Есть контроллеры, которые могут со 150–200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи, и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ — широтно-импульсная модуляция) и MPPT (Maximum Power Point Tracking — отслеживание точки максимальной мощности).

Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT-контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно большим КПД, но и стоят дороже.

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус.

Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели.

Но и это не всё. Каждая солнечная батарея — это четырёхслойный пирог: стекло, прозрачная EVA-плёнка, солнечный элемент, герметизирующая плёнка. И вот тут каждый этап крайне важен.

Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии.

От прозрачности EVA-плёнки зависит, сколько энергии попадёт на элемент и сколько энергии выработает панель. Если плёнка окажется бракованной и со временем помутнеет, то и выработка заметно упадёт.

Далее идут сами элементы, и они распределяются по типам в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте элемент будет греться и быстрее выйдет из строя.

Ну и финишная плёнка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей очень быстро на элементы попадёт влага, начнётся коррозия, и панель выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны — это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику.

А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний.

Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория — это Калифорнийская энергетическая комиссия, а вторая лаборатория европейская — TUV.

Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам.

Цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до восьми часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети.

При этом основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник.

Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей продают всё сопутствующее оборудование, поэтому я начал поиск, отталкиваясь от солнечных батарей.

Один из солидных брендов — TopRay Solar. О нём есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует, и далеко не на последних местах, то есть можно брать.

Кроме того, фирма-продавец солнечных панелей TopRay также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство — вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчёт резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности.

Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300–350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт⋅ч в месяц.

Вот тут и задумаешься над проведением энергетического аудита. И начнёшь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.

Не буду томить, остановился я на более дешёвой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  • Солнечная батарея TopRay Solar 280 Вт Моно — девять штук.
  • Однофазный гибридный инвертор на 5 кВт InfiniSolar V-5K-48 — одна штука.
  • Аккумулятор AGM Парус HML-12-100 — четыре штуки.

Дополнительно мне предложили купить профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить.

Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Этот комплект может выдать до 5 кВт мощности в автономном режиме — именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5 кВт + 5 кВт = 10 кВт на фазу. Или можно сделать трёхфазную систему, но я пока довольствуюсь и этим.

Инвертор высокочастотный, а потому достаточно лёгкий (около 15 кг) и занимает немного места — легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить ещё столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше — максимум я видел 2400 Вт. Оптимальный угол — это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100 А⋅ч 48 В, то есть запасено 4,8 кВт⋅ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM, лучше не насиловать.

Итак, у меня есть половина ёмкости, а это 2,4 кВт⋅ч, то есть около восьми часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем, и ещё останется половина ёмкости АКБ на аварийный режим.

Утром уже встанет солнце и начнёт заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить ещё аккумуляторов и генератор. Ведь зимой солнца совсем мало, и без генератора будет не обойтись.

Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня около 25–30 метров, и я заранее проложил два гибких провода сечением 6 мм², так как по ним будет передаваться напряжение до 100 В и ток 25–30 А.

Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями.

Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30 мм болтов, они — своеобразный «крючок» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по три панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115 В без нагрузки и снизить ток, а значит, можно выбрать провода меньшего сечения.

Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения — называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надёжный контакт и быстрое замыкание и размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение, и подключены последовательно для обеспечения напряжения 48В. Далее они подключены к инвертору кабелем с сечением 25 мм².

Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально — в инверторе установлены довольно ёмкие конденсаторы, и они начинают заряжаться в момент подключения к аккумуляторам.

Максимальная мощность инвертора — 5000 Вт, а значит, ток, который может проходить по проводу от АКБ, будет составлять 100–110 А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам.

Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора.

Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя — и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция, и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм. После этого наступает самое интересное.

После запуска солнечной электростанции я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500–2100 Вт во время работы, посудомоечная машина потребляет 400–2100 Вт.

Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днём: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга.

На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии — эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, чтобы взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power).

То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счёт солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии, и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живём, как прежде, пока соседи ходят за водой с вёдрами.

Но есть в наличии дома солнечной электростанции и нюансы:

1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов все следы просто смывались бы дождями.

Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.

2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более инвертор включает вентиляторы активнее, и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.

3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение и отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищённому 25 порту SMTP, а все современные почтовые сервисы вроде Gmail или Mail.ru работают по защищённому порту 465. То есть сейчас фактически оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *