ННО электролиз воды
3,5 куба, 3500 литров
В 1 литре воды:
1234,44 л водорода
604,69 л кислорода
186450 Известно, что грамм-атом численно равен атомной массе вещества, а грамм-молекула — молекулярной массе вещества. Например, грамм-молекула водорода в молекуле воды равна двум граммам, а грамм-атом атома кислорода — 16 граммам. Грамм-молекула воды равна 18 граммам. Так как масса водорода в молекуле воды составляет 2×100/18=11,11%, а масса кислорода — 16×100/18=88,89%, то это же соотношение водорода и кислорода содержится в одном литре воды. Это означает, что в 1000 граммах воды содержится 111,11 грамм водорода и 888,89 грамм кислорода.
Один литр водорода весит 0,09 гр., а один литр кислорода — 1,47 гр. Это означает, что из одного литра воды можно получить 111,11/0,09=1234,44 литра водорода и 888,89/1,47=604,69 литра кислорода. Из этого следует, что один грамм воды содержит 1,23 литра водорода.
Затраты электроэнергии на получение 1000 литров водорода сейчас составляют 4 кВтч, а на один литр — 4 Втч. Поскольку из одного грамма воды можно получить 1,234 литра водорода, то на получение водорода из одного грамма воды сейчас расходуется 1,234×4=4,94 Втч.
Это целиком взято из патента RU2277138.
Но У Мэйера движок 50 л.с. (1.3 л.) на 100 км брал 4.5 литра воды.
В общем конкретных данных пока нет! =В патенте четко написано:
Voltage Intensifier Circuit
40,000 volts @ 1 ma = 40 wats of applied electrical power
40 watts + 12 volts battery = 3,3 amp/hr
Напряжение цепи усилителя яркости
40000 вольт при 1 мА = 40 Wats прикладных электрическая мощность
40 Вт 12 вольт батареи = 3,3 ампер / час
Из этого можно сделать вывод что имеется в виду напряжение 40 кВ а значит и ток вырастит но одно но если нам позволит источник то есть мы ему сделаем 40 кВ но источник намотаем на ту силу тока что нам нужно . но есть такой называемый холодный ток и напряжения получаемое с плоская бифилярная катушка тесла и он тоже работает
(
Вода это топливо в прямом смысле слова.
В 1 литре воды:
1234,44 л водорода
604,69 л кислорода
Распыление воды в холодный туман.
Такая водно топливная смесь может гореть не только в двигателе внутреннего сгорания, но и в любой котельной, а также использоваться на топливных электростанциях вместо солярки. Перспективы интересные: представьте себе, что все автономные электрогенераторы, силовые установки судов и мощные двигатели грузовиков, работающие сейчас на топливе могут быть модернизированы для работы на воде. Теоретических препятствий для этого нет. В таком случае, рынок автономных источников энергии ждут большие позитивные изменения.
Есть простой и эффективный способ Фарадея.
Приспособят медный бачок на выхлопной коллектор (надо чтобы бачок на него плотно прилегал по всем вывихах )И очень герметичный (что бы не засосало воду в двигатель и за разгерметизации и очень крепкий, что бы не разорвало от избыточного давления пара и не смяло при разряжении) и залей в бачок воду. Выход от бачка трубкой / трубочкой подвели к впускному коллектору и будет тебе счастье .
Это доказал Фарадея. когда пропускал в раскаленном железом стволе пушки, но одно но железо при вращается ржавчину . (Лавуазье опилок добавил ствол пушки для восстановления железа (Платон, вставил железяку внутрь трубы, для лучшего соприкосновения молекул пара со стенкой внешней или внутренней трубы. ) если попадает смешанную с водой мочевину. в раскаленную трубку с нее выделяется аммиак, а оставшееся СО отбирает кислород у оксида железа . Потом аммиак поступает в цилиндр и там разлагается на водород и азот.
При попадании водяного пара в цилиндр при взрыве / детонации смеси бензиновых / соляровых паров некоторое количество молекул воды расщепляется на кислород и водород, и тут же сгорает, выделяя огромную энергию. Эта энергия позволяет экономить бензин / солярку в довольно значительном количестве . На больших дизельных двигателях экономия доходит до 25-30 % если система грамотно сделана.
Мэйера доказал электролиз воды
( если взять постоянный импульс с частотой 923 гЦ для щелочной вод и для дистиллированной 926 КгЦ две трубки с зазором между ними 1 мм и подать и на плюс наружной трубки плюс, а на другую внутреннею минус, то на минусе будет выделяться водород. а на плюсе кислород).
Таким образом, аномальные и специфические свойства воды играют ключевую роль в ее многообразном взаимодействии с живой и неживой природой. Все эти необычные особенности свойств воды настолько "удачны" для всего живого, что делает воду незаменимой основой существования жизни на Земле.
Расщепление воды с эффективностью 100%: полдела сделано
Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.
Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.
Осталось усовершенствовать полуреакцию окисления.
Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.
В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,
Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.
На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.
Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.
К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.
Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.
Есть ли способ разделение воды на кислород и водород без нагревания и электричества?
Есть. Рассмотрим все способы получения водорода из воды.
Вода – очень устойчивое соединение. Для разложения воды на водород и кислород чаще всего используют электрический ток.
Реакцию разложения вещества под действием электрического тока называют электролизом.
Разложить воду можно так же нагрев ее до высокой температуры ( выше 2500 °С. ).
Впервые водород из воды выделил французский химик А. Лавуазье. Он пропускал водяной пар через железную трубу, раскаленную докрасна в пламени. При высокой температуре вода взаимодействует с железом, образуя железную окалину Fe3O4, а водород выделяется в свободном виде.
Металлы, расположенные в ряду активности левее магния, вытесняют водород из воды уже при комнатной температуре. К их числу относится натрий. Реакция воды и натрия сопровождается выделением теплоты.
Ну и как правильно заметил Mikhail Levin, затраты на получение водорода всегда выше чем при его сгорании.
Новые технологии разложения воды в США и России
Технологии получения водорода посредством электрохимического разложения воды на её составляющие не стоят на месте. Недавно учёные из Университета Хьюстона обнаружили катализатор, который значительно ускоряет процесс разложения воды на водород и кислород. Катализатор состоит из легкодоступных, недорогих материалов и работает гораздо эффективнее, чем аналогичные материалы. Ознакомившись с данной новостью, наш коллега из РГУ нефти и газа (НИУ) им. И. М. Губкина, в свою очередь, рассказал нам об отечественной разработке в этой сфере, также заслуживающей пристального внимания.
Американские исследователи из Университета Хьюстона обнаружили катализатор, который активно ускоряет реакцию разложения воды на водород и кислород и, в отличие от аналогов, состоит из легкодоступных и недорогих материалов. Для его производства не используются драгоценные металлы, и работает он намного эффективнее, чем известные катализаторы. Такой материал позволил бы решить одну из основных проблем использования воды для производства водорода как одного из наиболее перспективных источников «чистой» энергии.
«Водород — это самый “чистый” энергоноситель, которым мы располагаем на Земле, — говорит Пол Чу (Paul Chu), профессор, заведующий кафедры физики Университета Хьюстона, директор-основатель и руководитель исследовательских работ Техасского центра исследований сверхпроводимости Университета Хьюстона (Texas Center for Superconductivity at UH, TcSUH). — Вода могла бы быть бесконечным источником водорода, если бы мы научились эффективно разрывать прочную химическую связь водорода с кислородом в воде с помощью электрического тока и соответствующего катализатора».
Новый катализатор был получен исследовательской группой Пола Чу при Университете Хьюстона, в которую также входят профессор физики Жифенг Рен (Zhifeng Ren) и доцент Шуо Чен (Shuo Chen), ведущие исследователи TcSUH, научные сотрудники Хайчин Чжоу (Haiqing Zhou) и Фанг Юй (Fang Yu), а также аспиранты Джинджинг Сан (Jingying Sun) и Ран Хей (Ran He).
Катализатор, состоящий из метафосфата железа, в кристаллическом виде выращенного на электропроводящей никелевой подложке, имеющей губчатую структуру, намного более эффективен и дёшев, чем любые аналоги.
«Наш материал позволяет отлично сэкономить, и он намного более эффективен, превосходя имеющиеся катализаторы», — говорит Жифенг Рен, профессор физики Онкологического центра имени М. Д. Андерсона при Университете Хьюстона и ведущий автор статьи о результатах работы исследовательской группы Пола Чу. Катализатор также долговечен, на испытаниях он успешно проработал более 20 часов и выдержал 10 тыс. рабочих циклов. «Некоторые катализаторы обладают выдающимися характеристиками, но они стабильны только один-два часа, — рассказывает Жифенг Рен. — Такие материалы практически бесполезны».
Реакция разложения воды на водород и кислород теоретически очень проста, но на практике она представляет из себя сложный процесс, требующий двух отдельных химических взаимодействий — реакции выделения водорода и реакции выделения кислорода, каждая из которых протекает на отдельном электроде. И, хотя эффективные водородные катализаторы доступны, отсутствие недорогого и действенного кислородного катализатора создаёт учёным значительные трудности в области водородной энергетики.
Водород имеет ряд значительных преимуществ. «Водород, полученный посредством разложения воды электрохимическим процессом “водного электролиза”, считается наиболее экологически безопасным энергоносителем, способным заменить ископаемое топливо и удовлетворить растущий спрос всего человечества на электроэнергию, поскольку вода является одновременно и единственным сырьём, и “продуктом сгорания” — ведь экологичная “водородная энергия” получается путём преобразования этого химического элемента обратно в воду», — поясняют исследователи. При этом, в отличие от солнечной энергии, ветра и других видов «зелёной» энергии, водород относительно легко хранить.
В настоящее время водород получают тремя основными промышленными способами: паровой обработкой угля в специальных газогенераторах, газопаровой конверсией природного газа и электролизом воды, особенно если нужен сверхчистый водород.
При первом способе над раскалённым добела коксом (углём, нагреваемым без доступа кислорода) пропускают водяной пар, при этом из-за высокой температуры атомы водорода в воде замещаются на атомы углерода — образуется смесь угарного газа (CO) и водорода (H2), которую затем разделяют или используют как есть. Во втором случае, также при высокой температуре (около 1000 °C), осуществляется превращение метана с водяным паром, углекислым газом (CO2) или смесью водяного пара и углекислого газа в присутствии катализатора на основе никеля с добавками оксидов магния, алюминия и других металлов, причём образующуюся смесь водорода и угарного газа нужно затем дополнительно обрабатывать водяным паром. Водород также получают как побочный продукт производства хлора и гидроксидов щелочных металлов, которое осуществляется электролизом растворов их хлоридов.
Все эти методы сложны, крайне энергозатратны и связаны с выработкой вредного угарного газа, а также сажи, то есть имеют существенный «углеродный след», несмотря на то, что исходное сырьё в данных процессах сгорает относительно «чисто».
Исследовательница Шуо Чен отмечает, что известные на сегодняшний день катализаторы, ускоряющие реакцию выделения кислорода при электролизе воды, используют благородные металлы — иридий, платину или рутений. Но эти материалы дороги и недоступны.
«В своём исследовании мы обнаружили дешёвый, высокоэффективный и стабильный катализатор, основанный на широко распространённых химических элементах, который поразительным образом превосходит все благородные металлы, — подытоживает Шуо Чен. — Наше открытие может привести к гораздо более экономичному промышленному производству водорода простым электрохимическим разложением (электролизом) воды».
Отметим, что разложение воды на составные элементы может осуществляться и с помощью фотокатализа, который использует силу солнца. Однако прямое воздействие солнца на воду слишком неэффективно, так как вода поглощает лишь небольшую часть спектра солнечного излучения. Шуо Чен поясняет, что в идеале солнечные батареи будут использоваться для выработки электроэнергии, которая вместе с соответствующим катализатором позволит легко и эффективно разлагать воду для получения такого нужного человечеству химического элемента, как водород.
Отечественная технология получения водорода
Рассказывает И. В. Мещерин, к.т.н., доцент кафедры газохимии РГУ нефти и газа им. И. М. Губкина, председатель Комитета по технологическому проектированию в НОПРИЗ, президент Национальной палаты инженеров:
— Известно, что производство водорода в основном осуществляется крупнотоннажными системами с единичной объёмной производительностью в диапазоне 10–100 тыс. Нм³/ч [1]. От 1 до 5 % получаемого водорода находит применение в малотоннажных, наукоёмких отраслях промышленности: электронной, электротехнической, стекольной, фармацевтической, пищевой; выплавке металлов и сплавов высокой чистоты; синтезе химически высокоактивных веществ и других отраслях. Водород является ценным химическим реагентом, и его получение и концентрирование из топливных, остаточных, сбросных газов позволяет значительно повысить экономическую эффективность производства. Водород почти не встречается в природе в чистом виде, но потребление данного газа во всём мире неуклонно растёт. Для производства водорода необходимо специальное оборудование, отличительной чертой которого является компактность и надёжность.
Децентрализованное (то есть малотоннажное) производство водорода требует создания высокоэффективных технологий с уровнем единичной объёмной производительности в диапазоне от 10 до 1000 Нм³/ч [2].
Данный аспект в сегодняшней ситуации может иметь существенное влияние на экономическую эффективность производств, в которых используется водород. В условиях экономического кризиса поиск технологий получения водорода с меньшими затратами является актуальной задачей. В настоящий момент внутрироссийские регулируемые цены на природный газ продолжают оставаться одними из самых низких в мире, даже с учётом более чем двукратного падения цен на природный газ на европейском рынке. Одним из альтернативных решений могут быть технологии получения водорода из природного газа.
Изучение конкретной проблематики производилось сотрудниками кафедры газохимии РГУ нефти и газа (НИУ) имени И. М. Губкина в условиях завода по производству кварцевого стекла — ООО «Технокварц» в городе Гусь-Хрустальный.
Компания ООО «Технокварц» производит водород для производственных нужд с помощью блока электролизёров БЭУ-250, состоящий из шести электролизёров СЭУ-40. Этой производительности достаточно для обеспечения существующего объёма потребления водорода в технологии наплава кварцевого стекла. Целью работы являлся поиск экономически более эффективного метода получения водорода на базе ресурсов завода.
Промышленное производство кварцевого стекла связано с развитием экстремальных процессов со специфическими условиями, главным образом в космической и электронной технике, производстве чистых, особо чистых веществ, редких металлов, высокотемпературных неорганических соединений и т.п.
В результате анализа существующих методов получения водорода был выбран, как наиболее целесообразный, метод паровой конверсии природного газа. При помощи д.т.н., профессора М. Х. Сосны был произведён технологический расчёт блока конверсии для установки получения водорода. Входными данными послужили составы входящих потоков, их объёмы, температуры, давления, доля водяного пара, а также длина реактора, его диаметр и толщина стенки (расчёт реактора в 2016 году выполняла Мария Давыдова, технолог газохимии и магистрантка РГУ нефти и газа им. И. М. Губкина). В результате обработки полученных данных получен материальный баланс процесса (табл. 1), конверсия метана составила 92,6 %. Был также проработан вопрос изготовления реактора из кварцевого стекла.
Ниже приводится эскиз гипотетического мини-, микрореактора проточного типа из кварцевого стекла в горизонтальном исполнении для проведения химических процессов. Основой реактора служит модуль, представленный на рис. 1. Зоны 1 и 2 служат для подачи исходных компонентов, реакционная зона 3 предназначена для размещения катализаторов, нагрева рабочей смеси до температуры реакции, воздействия ВЧ-, ВУФи СВЧизлучения или иного технологического воздействия. Конфигурация зоны 3 может формироваться по требованиям ведения химических реакций. Зона 4 организована как циклон для разделения и закалки продуктов реакции, в том числе и как газовая центрифуга. Единичные модули в расчётном количестве собираются в батарею, как показано на рис. 2. По усмотрению разработчиков промышленные модули могут быть спроектированы и в вертикальном исполнении цилиндрической или иной формы.
Экономическая эффективность достигается за счёт того, что используется относительно недорогой природный газ, по сравнению с дорогой электроэнергией, себестоимость оборудования из кварцевого стекла на 25–40 % меньше, чем из металла.
Возможность развития конкретной технологии и отладки её внутри предприятия открывает новый метод получения водорода для малотоннажных производств. Кроме того, появление нового перспективного ассортимента товарной продукции существенно усовершенствует технологии обработки кварцевого стекла, дополнительно будет способствовать улучшению экономических показателей кварцевого производства.
Поскольку паровая конверсия природного газа в комплексе с аппаратурным оформлением процесса является составной частью синтеза материалов по реакциям Фишера-Тропша, перед ООО «ТехноКварц» возникает перспектива нового направления — изготовление высокоэффективных минии микроканальных кварцевых реакторов для других сегментов отрасли газохимии.